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Detection of individual body time (BT) via a single-time-point assay
has been a longstanding unfulfilled dream in medicine, because BT
information can be exploited to maximize potency and minimize
toxicity during drug administration and thus will enable highly
optimized medication. To achieve this dream, we created a ‘‘mo-
lecular timetable’’ composed of >100 ‘‘time-indicating genes,’’
whose gene expression levels can represent internal BT. Here we
describe a robust method called the ‘‘molecular-timetable method’’
for BT detection from a single-time-point expression profile. The
power of this method is demonstrated by the sensitive and
accurate detection of BT and the sensitive diagnosis of rhythm
disorders. These results demonstrate the feasibility of BT detection
based on single-time-point sampling, suggest the potential for
expression-based diagnosis of rhythm disorders, and may trans-
late functional genomics into chronotherapy and personalized
medicine.

DNA microarray � gene expression � chronotherapy

D iverse physiological and metabolic processes exhibit circa-
dian rhythms, which are endogenous self-sustained oscilla-

tions with a period of �24 hours. In mammals, several clock
genes, including Clock, Bmal1�Mop3, Per1, Per2, Cry1, Cry2,
Cki�, and RevErbA�, and clock-controlled transcription fac-
tors, including Dbp, E4bp4, Dec1�Stra13, Dec2, Per3, Npas2,
RevErbA�, Ror�, Ror�, and Ror�, regulate, at least in part, gene
expression in central and�or peripheral clocks (1). Reflecting the
temporal changes in gene expression in central and peripheral
clocks (2–5), the potency and�or toxicity in drug administration
depend on an individual’s body time (BT) (6–10). It has been
suggested that drug administration at the appropriate BT can
improve the outcome of pharmacotherapy by maximizing po-
tency and minimizing the toxicity of the drug (11), whereas drug
administration at an inappropriate BT can induce severe side
effects (12). Despite the effectiveness and importance of such
BT-dependent therapy, termed ‘‘chronotherapy’’ (6–10), its
clinical use has been obstructed by the lack of clinically appli-
cable methods for BT detection. To address these difficulties, we
attempted to create standard expression profiles, termed a
‘‘molecular timetable,’’ composed of �100 ‘‘time-indicating
genes’’ and their expression levels during the course of a day, and
then to apply this timetable to BT detection.

Materials and Methods
Animals. To select time-indicating genes and construct their
standard expression profiles, we analyzed the previously ob-
tained genome-wide expression profiles (5) from pooled livers of
four Balb�c mice (male) every 4 h over 2 d under 12-h light�12-h
dark (LD) or constant-dark (DD) conditions. We independently
sampled livers from eight individual Balb�c mice (male) at
Zeitgeber time (ZT)12 (n � 4), ZT6 (n � 1), ZT18 (n � 1),

Circadian time (CT)6 (n � 1), and CT18 (n � 1) to verify the
capability of the molecular-timetable method. ZT is used for a
timescale under LD conditions, whereas CT is used for a
timescale under DD conditions. ZT0 represents lights on, and
ZT12 represents lights off, whereas CT0 represents subjective
dawn, and CT12 represents subjective dusk. We use the term
‘‘subjective,’’ because there are no external time cues in the DD
condition. We sampled livers from seven individual Clock�Clock
homozygous mutant mice (male) at ZT12 (n � 4) or ZT8 (n �
3) and three individual Balb�c mice (male) at ZT8 (n � 3) to
verify the feasibility of expression-based diagnosis of circadian
rhythm disorders. We further sampled livers from three indi-
vidual C3H mice (male) at ZT12 (n � 3) to verify the feasibility
of the molecular-timetable method for individuals with hetero-
geneous genetic background. All these Balb�c, C3H, and Clock�
Clock homozygous mutant mice were adapted under LD con-
ditions for 2 weeks from 5 weeks postpartum and then sampled.

Microarray Experiments. Total RNA was prepared by using Trizol
reagent (GIBCO�BRL). cDNA synthesis and cRNA labeling
reactions were performed as described (5). Affymetrix high-
density oligonucleotide arrays (Murine Genome Array U74A,
Version 1.0, measuring 9,977 independent transcripts) were
hybridized, stained, and washed according to the Technical
Manual (Affymetrix). Affymetrix software was used to deter-
mine the average difference (AD) between perfectly matched
probes and single-base-pair-mismatched probes. The AD of each
probe was then scaled globally so that the total AD of each
microarray was equal. The resulting AD values reflect the
abundance of a given mRNA relative to the total RNA popu-
lation and were used in all subsequent analyses.

Time-Indicating Genes. To select time-indicating genes whose
expression exhibits circadian rhythmicity with high amplitude,
the expression profile of each gene was analyzed through two
filters, one for circadian rhythmicity and the other for high
amplitude. To extract genes with circadian rhythmicity under
both LD and DD conditions, we first calculated the correlation
over time between 12-point time courses under LD (or DD)
conditions and cosine curves of defined periods and phases. We
prepared cosine curves of 24-h periodicity with peaks from 0 to
24 h in increments of 10 min, yielding a total of 144 test cosine
curves, and calculated the correlation value of the best-fitted
cosine curve for each probe set. We selected the probe sets
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whose best correlation values in LD and DD conditions were
both above the cutoff correlation value of 0.8. To further extract
genes with high amplitude under both LD and DD conditions,
we calculated the coefficient of variation of the expression levels
under LD (or DD) conditions, which is defined as its SD divided
by the average of expression levels. We selected the probe sets
whose coefficients of variation in LD and DD conditions were
both above the cutoff value of 0.15. Based on two successive
filtrations, 168 genes (182 probes) in the liver were identified.

Estimation of Molecular Peak Time. To estimate the peak time of
cycling genes, we tested for correlation over time between the
12-point time course of each gene and the 24-h period cosine
curves with different peak times at 10-min intervals. We esti-
mated the peak time of each cycling gene from the peak time of
the best-fitted cosine curve and defined it as the molecular peak
time.

Molecular-Timetable Method. We first normalized an expression
level, Xi, of the time-indicating gene i (i � 1 . . . N) using its
average �i and SD �i in the molecular timetable. The normalized
expression level Yi is described as follows: Yi � (Xi � �i)��i. We
created an expression profile {ti, Yi} (i � 1 . . . N) composed of
the molecular peak time ti of gene i and its normalized expression
level Yi. To estimate the BT of an expression profile, we
calculated the correlation over genes (i � 1 . . . N) between an
expression profile {ti, Yi} and a 24-h cosine curve {ti, �2
Cos(2�(ti � b)�24)} with a certain phase b (0 � b � 24). The
amplitude of the cosine curve is set to �2, so that the SD of the
normalized expression level Yi matches the SD of a continuous
cosine waveform (�1�24 �0

24 Cos2(2�(t � b)�24) dt � 1��2).
We prepared 24-h cosine curves with a phase b from 0 to 24 h
in increments of 10 min. We then selected the best-fitted cosine
curve that gave the best correlation value c. We noted that the
best correlation value c is always positive, because we calculated
the maximum value of correlation between an expression profile
and 144 test cosine curves. We also noted that the phase of the
best-fitted cosine curve (bc) indicates an estimated BT.

Statistical Significance in the Detection of BT. To evaluate the
statistical significance of BT estimation, we generated a random
expression profile {ti, Yr} (i � 1 . . . N), where Yr represents a
random variable following the distribution of Yi and then
calculated the correlation value cr and the phase bc

r of the
best-fitted cosine curve as described above. We repeated this
procedure 10,000 times to create the distribution of correlation
value cr and the phase bc

r (e.g., Fig. 4 A and B, which is published
as supporting information on the PNAS web site). The proba-
bility (termed Pr value) that a random expression profile has a
best-fitted cosine curve giving correlations equal to or greater
than those of the real expression profiles was determined from
the distribution of correlation value (cr) from 10,000 random
expression profiles.

Estimation of Measurement Noise. To estimate the measurement
noise of eight Bablc�C expression profiles (see Animals above)
at ZT12 (n � 4), ZT6 (n � 1), ZT18 (n � 1), CT6 (n � 1), and
CT18 (n � 1), we first calculated the difference di between a real
and an estimated expression level of gene i (i � 1 . . . N). di is
defined as di � Yi � �2 Cos(2�(ti � bc)�24), where bc
represents estimated BT. We then calculated the SD of di over
all time-indicating genes and defined it as the measurement
noise. Measurement noises of wild-type expression profiles
range from 86% to 108% (95 	 8% for mean 	 SD).

Statistical Significance in the Detection of Circadian Rhythm Disor-
ders. To evaluate the statistical significance of circadian rhythm
disorders, we generated a control expression profile with 100%

measurement noise {ti, �2 Cos(2�(ti�24)) 
 dr)} (i � 1 . . . N),
where dr represents a random variable following the distribution
of di, and then calculated the correlation value cc and the phase
bc

c of the best-fitted cosine curve, described above. We repeated
this procedure 10,000 times to create the distribution of corre-
lation value cc and the phase bc

c (e.g., Fig. 4 A and B). The
probability (termed Pc value) that a control expression profile
has a best-fitted cosine curve giving a correlation equal to or
lower than those of the observed expression profiles was deter-
mined from the distribution of the correlation value cc from
10,000 control expression profiles.

Sensitivity and Specificity of Molecular-Timetable Methods. We can
calculate the sensitivity and specificity of the molecular timeta-
ble method in the presence of a certain level of measurement
noise (100% or 200% measurement noise). First, we generated
10,000 control or random expression profiles in the presence of
a certain measurement noise level and then calculated the
distribution of cc or cr from 10,000 control or random expression
profiles as described above. We determined the Pc or Pr value at
the certain threshold value of correlation (c) from the distribu-
tion of cc or cr, respectively. Sensitivity (Sc) is defined as Sc(c) �
1 � Pc(c), indicating the probability of true positives or the
probability of circadian rhythmicity (control expression profile),
correctly identified by the test as meeting a certain threshold
value of correlation. Specificity (Sr) is defined as Sr(c) � 1 �
Pr(c), indicating the probability of true negatives or of circadian
rhythm disorder (random expression profile), correctly identi-
fied by the test as not meeting a certain threshold value of
correlation. There are tradeoffs between sensitivity and speci-
ficity, because sensitivity monotonically decreases, whereas spec-
ificity monotonically increases, with the threshold correlation
value. This tradeoff relationship is plotted as the receiver
operating characteristic (ROC) curve (e.g., Fig. 4C). The ROC
curve is defined as {Sr(c), Sc(c)} (0 � c � 1).

Performance of Molecular-Timetable Methods with Different Num-
bers of Time-Indicating Genes with Simulated Expression Profiles.
Performance of the molecular-timetable method with N time-
indicating genes (N � {3, 5, 10, 20, 30, 50, 100, 182}) was
calculated with simulated expression profiles in the presence of
100% or 200% measurement noise. First, we randomly selected
N from 168 time-indicating genes. Then, we generated control
{ti, �2 Cos(2�(ti�24)) 
 dr} and random expression profiles
{ti, Yr} in the presence of 100% measurement noise, where dr
and Yr represent random variables following the distributions of
di and Yi, respectively. In the presence of 200% noise, we
generated control {ti, �2 Cos(2�(ti�24)) 
 2dr} and random
expression profiles {ti, 2Yr}. We repeated these procedures
10,000 times and then calculated the distribution of the corre-
lation value (cc and cr) and the phase (bc

c and bc
r) from 10,000

control and random expression profiles and determined the Pc
and Pr values, sensitivity Sc, and specificity (Sr) at a certain
threshold value of correlation, as described above (Fig. 5, which
is published as supporting information on the PNAS web site).

Performance of Molecular-Timetable Methods with Different Num-
bers of Time-Indicating Genes with Real Expression Data. Perfor-
mance of the molecular-timetable method with N time-
indicating genes (N � {10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150}) was calculated with real expression
profiles. To select N time-indicating genes from 168 time-
indicating genes in the order of high-amplitude circadian rhyth-
micity, we first calculated the sum of correlation in LD, corre-
lation in DD, coefficient of variation in LD, and coefficient of
variation in DD for each gene. We then selected the top N
time-indicating genes in the order of this sum.

To determine a cutoff correlation value in the detection of
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circadian rhythmicity and circadian rhythm disorders, we first
calculated the receiver operating characteristic (ROC) curve of
the molecular-timetable method with N time-indicating genes in
the presence of 100% measurement noise, as described above.
We then determined a cutoff correlation value c (0 � c � 1) as
the value yielding equal sensitivity and specificity in the ROC
curve [Sr(c) � Sc(c)]. We noted that c is a monotonically
decreasing function of N.

To calculate sensitivity, specificity, and accuracy with real
expression data, we examined 11 wild-type Balb�c expression
profiles at ZT12 (n � 4), ZT6 (n � 1), ZT18 (n � 1), CT6 (n �
1), CT18 (n � 1), and ZT8 (n � 3), and 7 Clock�Clock mutant
expression profiles at ZT12 (n � 4) and ZT8 (n � 3). We
calculated sensitivity, which is defined as the percent of wild-type
Balb�c expression profiles (n � 11), with a correlation value
higher than a cutoff. We also calculated specificity, which is
defined as the percent of Clock�Clock mutant expression profiles
(n � 7), with a correlation value lower than a cutoff. To evaluate
the accuracy of molecular-timetable methods, we calculated
mean estimation error in BT detection, which is defined as the
average of absolute differences between sampling times and
estimated BT of wild-type Balb�c expression profiles (n � 11).
Calculated sensitivity, specificity, and mean errors are plotted
along with N time-indicating genes (Fig. 6, which is published as
supporting information on the PNAS web site).

Results and Discussion
Recently, we, along with others, performed genome-wide gene
expression analyses using high-density DNA microarrays to
identify clock-controlled genes in the mouse central [suprachi-
asmatic nucleus (SCN)] and peripheral (liver) clocks (2–5). We
analyzed the previously obtained genome-wide expression pro-
files from four pooled livers every 4 h over 2 d under LD or DD
conditions and found 168 time-indicating genes (Fig. 1 and Table
1, which is published as supporting information on the PNAS
web site) whose expression exhibits high circadian rhythmicity
and whose peak time, termed molecular peak time, can therefore
indicate the time of day (see Materials and Methods). Impor-
tantly, the molecular peak times of time-indicating genes were
distributed over 24 h (Fig. 1B). Moreover, each time-indicating
gene exhibited similar expression patterns under LD and DD
conditions (Fig. 1 A), and the molecular peak times of each gene
under LD and DD conditions were similar to each other (Fig.
1C), suggesting that expression profiles of time-indicating genes
can indicate BT, the endogenous state of the circadian clock.

To verify this possibility, we attempted to extract the BT
information from the expression profiles of 168 time-indicating
genes (see Materials and Methods). As expected, BT information
can be extracted from the expression profiles of 168 time-
indicating genes with high accuracy and estimation errors from
0.0 to 1.3 h (0.4 	 0.3 h for mean 	 SD, Fig. 1D). For instance,
at ZT0 (the beginning of day) or CT0 (the beginning of a
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Fig. 1. Time-indicating genes in the mouse liver. (A) Temporal expression data of 168 time-indicating genes (182 probes) in the mouse liver. The colors, in
ascending order from green to red to blue, represent the molecular peak time of time-indicating genes (the color code is represented above the diagrams). An
expression level of each time-indicating gene is subtracted by its average and divided by its SD over 12-point time courses. The blocked horizontal bars below
the diagrams correspond to the LD schedule. White blocks indicate periods of exposure to light, whereas black blocks correspond to periods of darkness, and
gray blocks indicate the period of subjective light under constant darkness. (B) Distribution of the average of molecular peak time between LD and DD conditions.
Average molecular peak times are distributed from 0 to 24 h. (C) Distribution of differences of molecular peak times between LD and DD conditions. Molecular
peak times in LD and DD conditions are similar to each other. (D) Expression profiles of 168 time-indicating genes in the mouse liver at different ZT under LD
conditions or CT under DD conditions. The best-fitted cosine curve is represented, and its peak indicates the estimated BT.
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subjective day), dawn-indicating genes (green), whose molecular
peak times are approximately ZT0 or CT0, are highly expressed,
whereas dusk-indicating genes (red), whose molecular peak
times are approximately ZT12 or CT12, are expressed at a low
level (Fig. 1D). At ZT12 or CT12, on the other hand, dawn-
indicating genes are expressed at a low level, whereas dusk-
indicating genes are highly expressed (Fig. 1D). In both cases, the
normalized expression levels of day-indicating genes (yellow-
green to orange) or night-indicating genes (purple to blue)
gradually change from higher to lower expression levels or from
lower to higher levels along their molecular peak times. Such
gradual and cyclic changes in expression along the molecular
peak time line allow us to extract the BT from the expression
profiles via cosine curve fitting (Fig. 1D). The peak of the
best-fitted cosine curve to an expression profile of 168 time-
indicating genes indicates the estimated BT. For example, the BT
extracted from expression profiles at ZT0 on the first day under
LD or at CT0 on the first day under DD are BT0.2 and BT1.3,
respectively. We termed this the molecular-timetable method
(see Materials and Methods).

To demonstrate the capability of this molecular-timetable
method, we attempted to infer BT from independent samples.
We obtained fresh liver samples from four individual mice at
ZT12, which was thought to be one of the noisiest time points,
because lights out at that time resets the phase of circadian clocks
in species, such as mice, with a free running period shorter than
24 h. We then measured the expression profiles of 168 time-
indicating genes (Fig. 2 A). Using the molecular-timetable
method, we significantly detected the circadian rhythmicity in all
expression profiles of these samples (P � 0.0001, Fig. 2 A), and
the estimated BT indicated BT12.8, BT10.2, BT11.2, and BT11.7,
respectively (Fig. 2 A). These results suggest that BT can be
accurately inferred from individual expression profiles with
estimation errors from 0.3 to 1.8 h (1.0 	 0.6 h for mean 	 SD,
Fig. 2 A). To further demonstrate the capability of the molecular-
timetable method, we obtained new liver samples from individ-
ual mice at ZT6, ZT18, CT6, and CT18, all times that were
different from the time points used to construct the molecular
timetable, and measured the expression profiles of 168 time-
indicating genes (Fig. 2B). We significantly detected the circa-
dian rhythmicity in all expression profiles of ZT6, ZT18, CT6,
and CT18 samples (P � 0.0001, Fig. 2B) and found that the
estimated BT indicated BT6.7, BT19.3, BT5.7, and BT20.0,
respectively (Fig. 2B). These results suggest that BT can be
accurately inferred from expression profiles at time points that
were not used to construct the molecular timetable, with esti-
mation errors from 0.3 to 2.0 h (1.1 	 0.7 h for mean 	 SD,
Fig. 2B).

The molecular-timetable method can be applied for the
diagnosis of circadian rhythm disorders (see Materials and
Methods). To demonstrate the feasibility of expression-based
diagnosis of circadian rhythm disorders, we sampled livers at
ZT12 from four individual Clock�Clock homozygous mutant
mice, which were known to have altered circadian behavioral
rhythms (13, 14), and then measured the expression profiles of
168 time-indicating genes (Fig. 3A). We significantly detected
the rhythm disorders in all expression profiles of Clock�Clock
homozygous mutant samples at ZT12 (P � 0.0001, Fig. 3A). To
further demonstrate the feasibility of the expression-based di-
agnosis of circadian rhythm disorders, we simultaneously sam-
pled livers from three individuals of wild-type (
�
) mice and
Clock�Clock mutant mice at ZT8 and measured the expression
profiles for 168 time-indicating genes (Fig. 7, which is published
as supporting information on the PNAS web site). We signifi-
cantly detected the circadian rhythmicity in all expression pro-
files of wild-type (
�
) samples (P � 0.0001, Fig. 7) and found
that the estimated BT indicated BT7.3, BT6.7, and BT9.5 (Fig.
7), which were around sampling time ZT8. On the other hand,

we significantly detected rhythm disorders in all expression
profiles of Clock�Clock homozygous mutant samples at ZT8
(P � 0.0001, Fig. 7). These results suggest that the molecular-
timetable method can be applied not only for BT detection but
also for the detection of circadian rhythm disorders.

In clinical situations, methods for BT detection should be
applicable for populations with heterogeneous genetic back-
grounds. To demonstrate the capability of the molecular-
timetable method for individuals with heterogeneous genetic
backgrounds, we attempted to apply the molecular-timetable
method for other inbred strains with different genetic back-
grounds from the original strain used for the construction of the
molecular timetable. We sampled livers at ZT12 from three
individual C3H mice, which were different from the original
Balb�c strains used to construct the molecular timetable, and
measured expression profiles for 168 time-indicating genes (Fig.
3B). We significantly detected the circadian rhythmicity in all
expression profiles of C3H samples (P � 0.0001, Fig. 3B) and
found that the estimated BT indicated BT12.3, BT11.3, and
BT11.3, respectively (Fig. 3B). These results suggest that BT can
be accurately inferred from the expression profiles of individuals

Fig. 2. Significant and quantitative detection of BT from individual expres-
sion profiles at ZT12 (A) or ZT6, ZT18, CT6, and CT18 (B). The colors, in
ascending order from green to red to blue, represent the molecular peak time
of time-indicating genes (the color code is represented below the diagrams).
An expression level of each time-indicating gene is subtracted by its average
and divided by its SD in the molecular timetable. The best-fitted cosine curve
is represented, and its peak indicates the estimated BT, BT12.8 (A Upper Left),
BT10.2 (A Lower Left), BT11.2 (A Upper Right), and BT11.7 (A Lower Right),
and BT6.7 (B Upper Left), BT19.3 (B Lower Left), BT5.7 (B Upper Right), and
BT20.0 (B Lower Right).
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with heterogeneous genetic backgrounds, with estimation errors
from 0.3 to 0.7 h (0.6 	 0.2 h for mean 	 SD, Fig. 3B).

In this study, we used mouse livers to construct the molecular
timetable and demonstrated the feasibility of the molecular-
timetable method based on single-time-point sampling for de-
tection of BT and diagnosis of circadian rhythm disorders. Other
tissues besides the liver can be used to construct molecular
timetables, because there are circadian oscillators scattered
throughout the body in various tissues and organs, including the
mouse suprachiasmatic nucleus (SCN), liver, skeletal muscle,
lung, cornea, kidney, heart, aorta, skin, oral mucosa, and white
blood cells (2–5, 15–19). Genome-wide expression analyses in
some of these tissues have been performed and have demon-
strated that between 2% and 10% of the analyzed genes exhibit
circadian oscillations in RNA expression levels (2–5). In fact, we
analyzed the previous genome-wide expression data for the
mouse SCN (5) and found that BT can be represented in the
expression profiles of SCN time-indicating genes (Table 2, which
is published as supporting information on the PNAS web site),
with low estimation errors from 0.3 to 1.8 h (1.0 	 0.4 h for
mean 	 SD, Fig. 8, which is published as supporting information
on the PNAS web site).

The molecular-timetable method can be also applied to or-
ganisms other than the mouse because a wide range of organ-
isms, including human, rat, Drosophila, Arabidopsis, Neurospora,
and cyanobacteria, are known to have circadian clocks (20), and
genome-wide expression analyses in some of these organisms
have shown that a substantial portion of the analyzed genes
exhibit circadian oscillations in RNA expression levels (21–27).
Actually, we analyzed the previously obtained genome-wide
expression data of Drosophila heads (24) and found that BT can
be represented in the expression profiles of 113 time-indicating
genes of Drosophila (Table 3, which is published as supporting
information on the PNAS web site) with low estimation errors
from 0 to 1.5 h (0.4 	 0.4 h for mean 	 SD, Fig. 9, which is
published as supporting information on the PNAS web site). We
applied this molecular timetable for the detection of BT and the
diagnosis of circadian rhythm disorders in Drosophila. We si-
multaneously sampled heads from wild-type (
�
) and Dro-
sophila Clock homozygous mutant (28) (dClock�dClock) f lies at
ZT13 and obtained expression profiles for 113 time-indicating
genes (Fig. 10, which is published as supporting information on
the PNAS web site). We significantly detected the circadian
rhythmicity in all expression profiles of wild-type samples (
�
)
at ZT13 (P � 0.0001, Fig. 10) and found that the estimated BT
indicated BT13.7 and BT14.5, respectively (Fig. 10). On the
other hand, rhythm disorders were significantly detected from
dClock�dClock expression profiles (P � 0.0001, Fig. 10). These
results suggest that the molecular-timetable method can be
applied for the detection of BT and circadian rhythm disorders
in organisms other than mouse.

Performance of the molecular-timetable method is character-
ized by three measures specificity, sensitivity, and estimation
error (Fig. 4 and see Materials and Methods). The first measure,
sensitivity, is defined as the percent of control expression profiles
(blue) higher than threshold of correlation in cosine curve fitting
(Fig. 4A). The second measure, specificity, is defined as the
percent of random expression profiles (red) lower than threshold
of correlation (Fig. 4A). There is a tradeoff between sensitivity
and specificity, because changing the threshold of correlation
influences these measures in opposite directions, and thus
performance of molecular-timetable method depends on segre-
gation between control and random expression profiles (Fig.
4C). The third measure, estimation error, is defined as the
difference between estimated BT and true BT (blue, Fig. 4B).
These results show that the molecular-timetable method with
168 time-indicating genes in mouse liver is a remarkably specific,
sensitive, and accurate method.

In this study, we devised a method for BT detection utilizing
single-time-point data for multiple molecules. To elucidate the
importance of the use of many time-indicating genes, we assessed
the specificity, sensitivity, and estimation error of the molecular-
timetable method with different numbers of time-indicating
genes in the presence of measurement noise, which is inevitable
in clinical situations (see Materials and Methods). In the presence
of 100% measurement noise, the application of the molecular-
timetable method with 100 (or 150) time-indicating genes had
the capability of detecting the BT with �99.99% (99.99%)
sensitivity and 99.99% (99.99%) specificity and with low esti-
mation errors 0.30 	 0.24 h for mean 	 SD (0.25 	 0.21 h for
mean 	 SD, Fig. 5). Even in the presence of 200% measurement
noise, use of the molecular-timetable methods with 100 (or 150)
time-indicating genes still had the capability of detecting BT with
98.58% (99.72%) sensitivity and 98.58% (99.72%) specificity
and with low estimation errors 0.62 	 0.48 h for mean 	 SD
(0.50 	 0.39 h for mean 	 SD, Fig. 5). On the other hand, the
molecular-timetable method with three (or five) time-indicating
genes failed to specifically, sensitively, or accurately detect BT or
rhythm disorders, suggesting the importance of the use of many
time-indicating genes (Fig. 5). The use of �100 time-indicating

Fig. 3. Significant detection of BT and rhythm disorders from expression
profiles of Clock�Clock mutant mice at ZT12 (A) and C3H mouse at ZT12 (B).
The colors, in ascending order from green to red to blue, represent the
molecular peak time of time-indicating genes (the color code is represented
below the diagrams). An expression level of each time-indicating gene is
subtracted by its average and divided by its SD in the molecular timetable. The
best-fitted cosine curve is represented, and its peak indicates the estimated BT,
BT12.3 (B Upper Left), BT11.3 (B Lower Left), and BT11.3 (B Lower Right).
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genes can confer with high sensitivity, specificity, and accuracy,
to the molecular timetable, even in the presence of high mea-
surement noise. Interestingly, we noted that the molecular-
timetable method, with as few as 60 time-indicating genes, if
selected appropriately can sensitively and accurately detect BT
and sensitively diagnose rhythm disorders in real expression
profiles (Fig. 6).

Collectively, we constructed a molecular timetable and de-
vised a specific, sensitive and accurate method for detection of
BT and rhythm disorders from a single-time-point expression
profile using this molecular timetable. The power of the molec-
ular-timetable method can be demonstrated by the quantitative
and accurate detection of BT from individual expression profiles
and the accurate detection of circadian rhythm disorders in

Clock�Clock homozygous mutant mice. These results demon-
strate the feasibility of BT detection based on single-time-point
sampling, suggest the capacity for the expression-based diagnosis
of circadian rhythm disorders, and may lead to the development
of chronotherapy and personalized medicine.
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